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Abstract—The Java memory model guarantees sequentially
consistent behavior only for programs that are data race free.
Legal executions of programs with data races may be sequentially
inconsistent but are nevertheless subject to constraints that en-
sure weak safety properties. Occasionally, one allows programs to
contain data races for performance reasons and these constraints
make it possible, in principle, to reason about their correctness.
Because most model checking tools, including Java Pathfinder,
only generate sequentially consistent executions, they are not
sound for programs with data races. We have developed an
extension of Java Pathfinder called Java Path Relaxer (JPR) that
generates an overapproximation of the executions that are legal
according to the Java Memory Model and can thus be used to
soundly reason about programs with data races. In this paper, we
discuss some of the interesting implementation issues that arose
when implementing the extension of JPF.

Index Terms—relaxed memory model, benign data races, Java
memory model

I. INTRODUCTION

The memory model of a programming language defines
which values a thread can see when reading a variable from
shared memory. If the memory model is sequential consistency
(SC) [19], then the program behaves as if all of its reads and
writes occur in some order consistent with the program order
on individual threads, and each read of a variable sees the most
recent write to that variable in the order. This implies that all
threads see the writes in a consistent way. Sequential consis-
tency is desirable because it corresponds with programmers’
intuition, and allows formal reasoning techniques and tools,
most of which assume sequential consistency, to be used.

However, memory systems in most modern multi-core pro-
cessors are not sequentially consistent. Also, a variety of com-
piler optimizations and transformations that would be correct
in a sequential program may introduce sequentially incon-
sistent behavior into a multi-threaded program. For example,
consider the following program fragment where result and
done are visible to multiple threads.

result = computation();
done = true;

The variable done is initially false and not accessed by
computation(), which updates result. Since the two
statements are independent, the order could be reversed
without affecting the sequential semantics. However, if this
fragment occurs in a concurrent program executed under a
relaxed memory model, this is not necessarily semantically
neutral. If done is intended to be a flag to other threads
that computation() is finished, then reversing the order

could result in another thread finding done==true, and
then seeing a state reflecting an incomplete execution of
computation(). This would probably be a catastrophic
bug, and also one that would manifest itself only intermittently,
with different frequencies on different systems. As a result,
testing is problematic, and tool support welcome. Most model
checkers, though, implicitly assume sequential consistency and
would not exhibit the sequentially inconsistent behavior that
would reveal the bug.

It is possible to prevent sequentially inconsistent behaviors.
Architectures provide instructions such as memory fences that
can be used to prevent reordering by the hardware and are
typically inserted in the object code as a result of synchro-
nization instructions in the program’s source. Compilers can
refrain from certain optimizations that may cause sequentially
inconsistent behavior. Traditionally, memory models have been
defined for architectures, but more recently memory models
have become part of a programming language’s semantics and
memory models have been defined for languages including
Java [11, Chapter 17], .net based languages such as C# [9,
Partition I, section 12.6], C++ [4], and OpenMP [5]. Typically,
programming languages guarantee sequential consistency only
for programs that are correctly synchronized, i.e. data race-
free (DRF) on all sequentially consistent executions.

A data race is a pair of conflicting operations (i.e. the
operations are performed by different threads, both access the
same memory location and at least one is a write) that are
not ordered by sufficient synchronization. Exactly what consti-
tutes “sufficient synchronization” is defined by the language’s
memory model. In Java and C# (but not C++), all interthread
accesses to volatile variables are considered ordered, as are all
actions on the same thread. Thus marking done as volatile
will eliminate the data races and guarantee that if any thread
reads result after reading done and finding it true will see
a value written not earlier than the latest write to result
before setting done. There are a variety of other ways to
introduce the synchronization orderings required to prevent
data races; including locks and synchronized blocks, joins,
barriers, operations on atomic objects, etc.

Many programming language memory models leave the
semantics of programs with data races undefined so that a data
race is always a bug. While the JMM guarantees sequentially
consistency only for programs that are data race free, it
also constrains programs with data races in order to provide
some weak security guarantees. If all of the legal executions,
including those that are not sequentially consistent, of a racy
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1 public final class String{
private final char value []; // final fields set in constructor

3 private final int offset ;
private final int count ;

5 private int hash; // hash is not final, default value is 0
...

7 public int hashCode(){
int h = hash;

9 int len = count;
if (h == 0&&len > 0){

11 int off = offset ;
char val [] = value ;

13 for ( int i = 0; i < len; i++)
h = 31∗h + val[ off ++];

15 hash = h;
}

17 return h;
}

19 }

Fig. 1: Java’s String class. The data race is benign.

program still satisfy the program’s specification, then we can
consider the data race to be benign. While it is best to write
data race-free programs (see [1] for a very strong opinion on
the subject), occasionally, one may want to take advantage
of the JMM semantics to allow races for better performance.
Intentional data races can be found, for example, in the
java.lang.String and java.util.ConcurrentHashMap classes.

A fragment of java.lang.String is shown in Fig. 1. The read
of hash (line 8) and the write of hash (line 15) form a data
race when two different threads invoke the method. However,
in this context, the data race does not affect the correctness of
hashCode(); in any execution it always returns the correct hash
value. A more formal treatment will be given later; intuitively,
the JMM guarantees that even with races, no “out-of-thin-air”
values will be seen, thus any thread that reads h in line 8
will get 0, the initial value, or a value that has actually been
assigned to it. The JMM also guarantees that correct values of
final fields of properly constructed objectsare always seen, thus
multiple computations of h in lines 11-14 will always yield the
same value. In a sequentially inconsistent execution, the value
of the hashcode may be computed multiple times by different
threads, but the correct value will always be returned. The
result is that String objects can be treated as if immutable (and
thus accessed by multiple threads without synchronization),
even though the hash field is not marked final and is not set
in the constructor. The lazy initialization provides significant
performance benefit in Java programs which typically create
many String objects that do not ever use the hashcode value.

Now consider a slightly modified version of the String class
shown in Fig. 2. A redundant read has been added at line
17. This does not appear to change the semantics under SC.
However, under the JMM, a read need not see the value of
the most recent write, thus a thread calling hashCode() could
see the non-zero value written concurrently by another thread
on the first read (line 8), and the initial value on the second
read (line 17) and return 0. This seemingly innocuous change
has turned the benign race in 1 into a bug.

As can be seen from the above discussion, reasoning cor-
rectness about programs with data races is difficult, thus tool
support is desirable. In this paper describe a JMM aware model
checker, Java PathRelaxer (JPR), which is an extension of JPF

public final class String{
2 private final char value [];

private final int offset ;
4 private final int count ;

private int hash; // hash is not final, default value is 0
6 ...

public int hashCode(){
8 int h = hash;

int len = count;
10 if (h == 0&&len > 0){

int off = offset ;
12 char val [] = value ;

for ( int i = 0; i < len; i++)
14 h = 31∗h + val[ off ++];

hash = h;
16 }

h = hash;
18 return h;

}
20 }

Fig. 2: A slightly different version of Java’s String class. A
redundant assignment (line 17) is added.

that generates all of the legal executions of finite Java programs
with data races so that their properties can be verified. The
way the JMM defines legal executions in programs with data
races does not lend itself to precise implementation with a
model checker and has been shown [25] to be stricter than
the designers intended. We have used an alternate approach
where instead of defining a legal execution by the existence
of a sequence of justifying executions, as the JMM does,
we compute a set of paths that is the least fixed point of a
monotone function by iteratively applying an extension of JPF.
The set of paths generated by JPR is an overapproximation
of the set of legal executions. Thus JPR can be used to
verify properties of programs with races in the same way
that JPF can be used to verify properties of sequentially
consistent programs. JPR successfully identifies Fig. 1 being
correct while Fig. 2 being incorrect. Although the details of
the formalization and implementation of JPR are specific for
Java, the main ideas are applicable to other languages with a
memory model based on the happens-before relation.

II. BACKGROUND

Below, we give a brief overview of the formal definition of
the Java Memory Model. Our treatment follows that of [2],
which is in turn based on the specification of the JMM given
in [22], [11].

An action a is a memory-related operation that belongs to a
thread, interacts with variable v or (monitor) lock m, and has
a kind. The kind is one of the following: volatile read from v,
volatile write to v, non-volatile read from v, non-volatile write
to v, locking of lock m, unlocking of lock m, starting a thread
t, detecting termination of thread t, and instantiating an object
with a set of volatile fields volatiles and a set of non-volatile
fields fields. All of the action kinds, with the exception of non-
volatile read, non-volatile write are synchronization actions.

Definition 1 (Execution): An execution E is described by
a tuple 〈A,P,≤po,≤so,W, V 〉 where
• A is a finite set of actions
• P is a program
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Initially, x == 0

Thread 1 Thread 2
A1: x = 1;

B1: r = x;
A2: x = 2;

Fig. 3: The read B2 could see either 0, 1, or 2.

• ≤po, the program order, is a partial order on A obtained
by taking the union of total orders representing each
thread’s sequential semantics

• ≤so, the synchronization order, is a total order over all
of the synchronization actions in A

• V , the value written function, assigns a value to each
write

• W , the write-seen function, assigns a write action to each
read action so that the value obtained by a read action r
is V (W (r)).

It is not required that W returns the “most recent” write to
the variable in question or that it is consistent for actions
on different threads, thus allowing sequentially inconsistent
behavior. In the execution sequence shown in Fig. 3, W (B1)
could either be the write of the initial value of x (past), A1
(most recent), or A2 (future), and hence V (W (B1)) could be
either 0, 1, or 2.

The synchronizes-with relation, <sw, relates certain pairs
of actions. For example, the action unlocking a monitor
synchronizes-with any subsequent (according to ≤so) unlock
of the same monitor. Other pairs include writing a volatile
variable and a subsequent read, the action of starting a thread
and the first action of the newly started thread, etc. See [11,
§17.4.4] for a complete list. We categorize the first action of a
<sw pair as a release action, and the second as an acquire. The
happens-before order, ≤hb, is a partial order on the actions in
an execution obtained by taking the transitive closure of the
union of <sw and ≤po. A well-formed execution satisfies some
unsurprising constraints on the consistencies of the various
partial and total orders and type safety which are omitted here
for brevity. The two most important rules for our purposes are
intra-thread consistency and happens-before consistency.

Definition 2 (Well-formed execution): See [2, Definition 6]
for the complete definition.

7) Program order is intra-thread consistent: for each thread
t, the sequence of action kinds and values of actions
performed by t in the program order ≤po is sequentially
valid1 with respect to P and t.

9) ≤hb is consistent with W : for all reads r of variable v,
r 6≤hb W (r) and there is no intervening write w to v, i.e.
if W (r) ≤hb w ≤hb r and w writes to v then W (r) = w.

Two operations from different threads conflict if neither is a
synchronization action, they access the same memory location
and at least one is a write. A data race is defined to be a pair
of conflicting operations not ordered by ≤hb.

A sequentially consistent (SC) execution is one where there
exists a total order, ≤sc, on the actions consistent with ≤po

1Sequential validity essentially means that given the values obtained when
a variable is read, each thread obeys the Java language semantics.

Initially, x == y == 0

Thread 1 Thread 2
A1: r1 = x B1: r2 = y
A2: y = r1 B2: x = r2

Fig. 4: The rules for a well-formed execution admit traces with
r1 == r2 == val, for any arbitrary “out-of-thin-air” value val
of the correct type.

and ≤so and where a read r of variable v sees the results of
the most recent preceding write w, i.e. w ≤sc r, and for all
reads r of variable v: if W (r) ≤sc w ≤sc r and w writes to
v then W (r) = w.

A Java program is correctly synchronized if all SC execu-
tions are data race free. An important property of the JMM
[11], [22] [2, Theorem 1], is that any legal execution of a
well-formed correctly synchronized program is SC.

The JMM constrains programs with data races. The main
goal was to provide a modicum of security guarantees even
for incorrect programs with races while still allowing as many
optimizations as possible. Desirable properties include type
safety and no out-of-thin-air values. While “out-of-thin-air”
value has not been precisely defined, the example in Fig.
4 [22] illustrates the idea and shows why well-formedness
(Definition 2) does not suffice. In a sequentially consistent
execution of the example in Fig. 4, the only values allowed are
r1==r2==0 However, letting W (A1) = B2, W (B1) = A2,
and V (A2) =val, and V (B2) =val, for any value val of
the correct type, we have a well-formed execution where
r1 == r2 == val, and val is said to come “out-of-thin-air”.

To rule out such cases, the JMM requires legal executions
to satisfy additional causality conditions intended to rule out
causal loops that could lead to self-justifying speculative
executions. A well-formed execution E is legal if there is
(roughly speaking) a sequence of well-formed executions Ei

with action sets Ai and a subset of actions Ci called the
commit set where each committed read either sees a committed
write or a write that happens-before it. It is required that
Ci−1 ⊆ Ci and that the sequence eventually produces E with
all of its actions committed.

Definition 3 (Legal Execution): [2, Definition 7] A well-
formed execution E = 〈A,P,≤po,≤so,W, V 〉 with happens-
before order ≤hb is legal if there is a finite sequence of sets
of actions Ci and well-formed executions Ei = 〈Ai, P,≤poi

,≤soi ,Wi, Vi〉 with happens-before order ≤hbi such that C0 =
φ, Ci−1 ⊆ Ci for all i > 0,

⋃
Ci = A, and for each i > 0,

the following are satisfied:
1) Ci ⊆ Ai

2) ≤hbi |Ci
= ≤hb |Ci

3) ≤soi |Ci = ≤so |Ci

4) Vi|Ci
= V |Ci

5) Wi|Ci−1
=W |Ci−1

6) For all reads r ∈ Ai − Ci−1,Wi(r) ≤hbi r
7) For all reads r ∈ Ci −Ci−1,Wi(r) ∈ Ci−1 and W (r) ∈

Ci−1

For example, in Fig. 4, suppose that we want to commit the
write action A2:y=r1;. Then V (A2) is the value read in action
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A1:r1=x. The value of x must be obtained from a write that
either happened-before A1 (the initialization action is the only
option) or is already committed. In the former case, the value
read is 0, in the latter case, it is the value written by B2.
Similarly, the value written in B2 must be the value read
in B1, which must be either committed or happen-before it.
However, A2 was not committed, so the initialization action
is the only option. The difficulty of understanding and using
this definition motivated the development of JPR.

III. JAVA PATHRELAXER

JPR extends JPF to generate non-SC paths (or traces).
Assertions are checked at appropriate points during generation
of paths. JPR maintains a function, WriteSet that maps
memory locations to sets of (write action, value) pairs. For a
read action of variable x, instead of the standard JPF behavior
where a read sees the value of the most recent write to x on
the current path, the value from an element of WriteSet(x)
is chosen. By exploring all of the available pairs at each point
and discarding paths that do not correspond to a well-formed
execution, an iteration of the JPR algorithm generates all of
the well-formed paths consistent with a given WriteSet . It
also returns a possibly expanded WriteSet containing writes
that occurred during its execution.

An initial WriteSet is obtained by running standard JPF,
slightly modified to record writes. Then JPR is executed
iteratively until the WriteSet no longer changes. We can view
an iteration of JPF as a monotonic function that takes a set
of paths and a write set and generates a new set of paths and
a write set. We have shown that this process converges and
yields an overapproximation of the legal executions according
to the JMM.[13, §4].

JMMAware(Program)
2 run standard JPF once and store write values in GlobalWriteSetold

GlobalWriteSet ← GlobalWriteSetold
4 while not converged do

GlobalWriteSet ← call
6 collectValuesJPF(GlobalWriteSetold, JMMListener)

// Check for convergence
8 if GlobalWriteSet == GlobalWriteSetold then

converged← true
10 else

GlobalWriteSetold ← GlobalWriteSet
12 endwhile

Fig. 5: JMMAware, the algorithm for computing the least
fixed point from collectValuesJPF algorithm.

Now, we describe the algorithms used in JPR in more
detail. JPF’s state representation is extended with the following
metadata
• WriteSet : MemLoc2 → 2ActionID×V al where each ac-

tion is a WRITE .
• ActionSet : 2ActionID ActionSet is the set of actions that

have been executed on the current path so far.
• HBSet : 2ActionID×ActionID in which actionID1 ≤hb

actionID2 for (actionID1, actionID2). HBSet records

2We use memLoc (memory location) to represent variables. The capital-
ized version means “the set of ...”.

collectValuesJPF(WriteSet , Listener l)
2 StatesVisited ← ∅

Generate initial state s0
4 StatesVisited ← {s0}

PathStack .push(s0)
6 Call l(SEARCH STARTS,WriteSet)

while PathStack is not empty do
8 scurr ← PathStack .peek()

if there exists an enabled instruction actionID at scurr
10 the next state is not visited yet then

call l(ADVANCING TO A NEW STATE ,WriteSet)
12 call l(EXECUTING ACTION ,WriteSet)

// For read actions use Read(memLoc,actionID)
14 let snext denote the next state after executing actionID on scurr

StatesVisited ← StatesVisited ∪ {snext}
16 PathStack .push(snext)

scurr ← snext

18 else
call l(BACKTRACKING,WriteSet)

20 PathStack .pop()
endwhile

22 return call l(SEARCH ENDS ,WriteSet)

Fig. 6: JPF’s modified DFS search algorithm that passes the
write sets to the JMM listener.

JMMListener(SearchEvent , GlobalWriteSetold)
2 switch(SeachEvent)

case SEARCH STARTS:
4 WriteSet ← HBSet ← ActionSet ← ImposeSet ← ∅

Write ← λx.undef
6 Read ← λx.undef

Stack.push(〈∅, ∅, ∅, ∅, ∅, ∅〉)
8 case SEARCH ENDS:

return GlobalWriteSetold ∪ WriteSet
10 case ADVANCING TO A NEW STATE:

Stack.push
12 (〈WriteSet ,ActionSet , ImposeSet ,Write,Read ,HBSet〉)

return
14 case BACKTRACKING:

Stack.pop()
16 〈WriteSet ,ActionSet , ImposeSet ,Write, Read,HBSet〉

← Stack.peek()
18 if END OF PATH then

GlobalWriteSet ← GlobalWriteSet ∪ {WriteSet}
20 if ImposeSet ⊆ ActionSet then

report valuations
22 return

continued with case EXECUTING ACTION in Fig. 8

Fig. 7: The algorithm for enforcing JMM’s semantics by
keeping track of write sets and happens-before relation among
the actions executed on this path.

the happens-before relation among the actions in
ActionSet and is updated at each step to reflect happens-
before edges introduced due to program order and syn-
chronization actions.

• ImposeSet : 2ActionID×Val where each action is a
WRITE . ImposeSet maintains information necessary to
ensure that if a read r obtains a value from a future write
w on some path, then w actually writes that value.

• Read : ActionID → ActionID ×Val3. Read maps each
read action to the write action it sees and the value it
returns. We can get W (r) and V (W (r)) from Read
where W and V are defined in Def.1.

• Write: ActionID → Val . Write maps each write action

3In Fig. 8, we also associate memLoc with Read and Write to locate
the variable of the action faster.
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24 continued from Fig. 7
case EXECUTING ACTION (actionID , actionType,memLoc, threadID):

26 ActionSet ← ActionSet ∪ {actionID}
HBSet ← HBSet ∪ {(ThreadState(threadID).lastActionID , actionID)} // Add hb-edge due to ≤po

28 ThreadState(threadID).lastActionID ← actionID
if actionType is a RELEASE then

30 if actionType is a VOLATILE WRITE then
Write(memLoc, actionID)← bytecodeStack .peek()

32 else if actionType is an ACQUIRE then
for each release action releaseID that syncs with actionID do // Add hb-edges due to ≤so

34 HBSet ← HBSet ∪ {(releaseID , actionID}
if actionType is a VOLATILE READ then

36 let latestWriteID denote last volatile write that syncs with actionID
// action actionID reads from the past action latestWriteID

38 Read(memLoc, actionID)← (latestWriteID ,Write(memLoc, latestWriteID)) //Volatile read from most recent write
else if actionType is a WRITE then

40 if (actionID , v) ∈ ImposeSet ∧ v 6= bytecodeStack .peek() then // Imposed value is not justified
backtrack

42 else if (actionID , v) ∈ ImposeSet then
if ∃aID ∈ ActionSet .(Read(memLoc, aID) == (actionID , ?)

44 ∧ (aID , actionID) ∈ HBSet) // check for llegal future read
then backtrack // hb-illegal future read

46 // no value imposed on this action or if done it proved to be consistent
Write(memLoc, actionID)← bytecodeStack .peek()

48 WriteSet(memLoc)←WriteSet(memLoc) ∪ {(actionID , bytecodeStack .peek())}
else if actionType is a READ then

50 non− deterministically choose (aID , v) ∈ GlobalWriteSetold(memLoc) do
if aID ∈ ActionSet then // past read from aID

52 if ((aID , actionID) 6∈ HBSet ∨
(aID , actionID) ∈ HBSet ∧

54 ( 6 ∃ write action waID to memLoc : waID ∈ ActionSet
∧((aID ,waID) ∈ HBSet ∧ (waID , actionID) ∈ HBSet))) // Legal past read

56 then
Read(memLoc, actionID)← (aID ,Write(memLoc, aID))

58 // else hb-illegal past read, continue with next write set entry
else if (aID , ?) 6∈ ImposeSet ∨ (aID , v) ∈ ImposeSet then // Potential candidate for future read

60 ImposeSet ← ImposeSet ∪ {(aID , v)}
Read(memLoc, actionID)← (aID , v)

62 // else illegal future read
return

Fig. 8: Continued from Fig. 7. The algorithm for enforcing JMM’s semantics by keeping track of write sets and happens-
before relation among the actions executed on this path. Synchronization actions VOLATILE WRITE , UNLOCK , etc. are
RELEASE actions; VOLATILE READ , LOCK etc. are ACQUIRE actions.

to the value it writes. This is the same as V (w) in Def.1

The JMMAwareJPF algorithm given in Fig. 5 represents
JPR. The collectValuesJPF algorithm in Fig. 6 outlines the
default depth-first search algorithm performed by standard
JPF which can report various state space search events to a
registered listener. The main addition made in JPR is to receive
a WriteSet as input and pass it to the listener each time it
is called. The listener returns a possibly expanded WriteSet
used for the next iteration.

The JMMListener algorithm is given in Figs. 7 and 8.
A non-volatile write action is finalized based on whether a
value is imposed on it consistently. In other words, in a well-
formed path, if a read action r obtains a value val from write
action w which may be executed in the future, w must occur
at some point in any well-formed path containing r, and it
must actually write val. Thus the ImposeSet maps write
actions to values imposed on them by past reads. Write and
WriteSet are updated with the new write action and its value
as long as this does not lead to inconsistencies with imposed

values. Additionally, it is required that if a read r sees write
w, r 6≤hb w. Before executing a non-volatile read action, r,
the algorithm finds past write actions to the memory location
(those ordered before the read by ≤hb as well as those that
are not) and future write actions that are not ordered by ≤hb.
A write action w, that is in the past is eliminated if it would
violate ≤hb consistency due to the presence of an intervening
write, i.e. if there is some other write to the location w′ so that
w ≤hb w

′ ≤hb r. For each of the remaining write action in
the candidate set, the value of the write is stored in the Read
function. If w is in the future, then the value read is stored
as the imposed value in ImposeSet(w). If the chosen write
action has already been imposed with a different value, it is
eliminated from the set of candidate write actions.

One of the difficulties encountered when implementing JPR
was the lack of a well-defined connection between the abstract
notion of executions used to define the JMM and actual Java
programs. In the development of JPR, this manifested itself in
the representation of the actionID. Within a single execution,
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Fig. 9: The structure of Java PathRelaxer.

the basic requirement of the actionIDs is that they are unique.
However, both the JMM definition of legal executions (Def. 3)
and JPR require that the identity of actions be compared across
different executions, i.e. we must be able to determine if, say,
a read of x in one execution is the same action as a read of x in
another by comparing their IDs. This becomes problematic for
programs with branches. In this paper, we identify an action
by 〈k, t, x, n〉 where n counts the occurrence of actions of
type k from thread t on variable x. Thus, the nth occurrence
of a certain type of action on a particular variable is always
considered to be the same action, regardless of what happens
in between, and whether or not the instructions occur in the
same place in the source code. Other approaches are possible
and are discussed [13], where different actionID schemes are
presented and compared. However, this is still an open issue.

IV. IMPLEMENTATION

We realized the algorithm described in section III as an
extension of JPF. The structure of JPR is shown in Fig.
9. JPR comprises three components; 1) JPR driver, 2) JPF
core, and 3) JMMListener. JPR driver calls JPF (configured
with JMMListener) iteratively as described in Fig. 5. Be-
fore each iteration, the JPR driver registers JPF with a new
instance of JMMListener (Figs. 7 and 8) and passes it the
GlobalWriteSetold. At each event (executing an instruction
or advancing/backtracking a state), JPF notifies JMMListener
which updates the metadata (Sect. III), and in turn affects JPF
when the data choice generators are set or backtracking is
requested. At the end of each iteration, the JPR driver receives
the GlobalWriteSetnew from JMMListener and compares it
with GlobalWriteSetold. The iteration process stops when a
fixed point is achieved.

A. JPR State Representation

The current implementation of JPR uses a separate stack
to record the metadata together with JPF path exploration.
An alternative approach would have been to extend JPF’s
system state with metadata (WriteSet , ActionSet , HBSet ,
ImposeSet , Read , and Write). This would have simplified
the control of JPR; when an ill-formed path is generated,
simply requesting a backtrack would suffice. However, given
the lack of an interface allowing the extension of JPFs state

representation, following the alternative approach would have
required modification of jpf-core, which was undesirable.

B. Checking Happens-before Consistency

For the JPR metadata, the basic data structures for
WriteSet , Write, and Read are hash tables; ActionSet and
ImposeSet are simple sets of elements. There are many ways
to implement HBSet. We used a direct implementation that
constructs a directed acyclic graph (DAG) where action are
nodes and an edge between ai and aj implies that ai ≤hb aj .
When checking happens-before consistency (see item 9 of
Definition 2) between a non-volatile read action r of variable
var and a non-volatile write action w where w = V (r),
the graph is traversed to find possible paths between the two
actions.

i) The search stops when we find a path from r to w, which
indicates a violation of “for all reads r of variable v,
r 6≤hb W (r)”

ii) The search stops when we find a path from w to r
that contains another intermediate write action w′ to the
same variable, which indicates violation of “if W (r) ≤hb

w ≤hb r and w writes to v then W (r) = w.”

The time complexity depends on the path search algorithm
used. If using depth-first search, the complexity would be
O(|A|+ |E|) where |A| represents the number of actions and
|E| represents the number of edges. Note that the graph is
dynamic and changes as actions and edges are added to it.
Happens-before consistency is frequently checked so the time
complexity directly affects the performance of JPR.

C. Garbage Collection

JPF contains garbage collection which is used to recycle
memory used by objects that will no longer be referenced. See
the execution sequence shown in Fig. 10. Suppose Thread-1
first creates an instance of Helper at memory location L1 and
assigns it to the shared reference h, then Thread-1 terminates.
Thread-2 assigns another Helper instance to h at location L2,
and access field x of that reference. According to the JMM,
the read in Thread-2 could return either 3 or 5 (the field values
of instances created at L1 and L2 respectively). However,
because of the termination of Thread-1, the instance created
in L1 is considered as “not referenced” and is automatically
garbaged collected by JPF. In order to simulate such JMM-
legal executions, JPF garbage collection feature must be turned
off for reference data types.

Suppose the constructor of Helper initializes a field x
Helper h is a shared reference

Thread 1 Thread 2
h = new Helper(3);

h = new Helper(5);
int r2 = h.x;

Fig. 10: JPF Garbage Collection: After termination of Thread-
1, the object created by Thread-1 will not be seen by Thread-2.
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D. Reading Future Objects

Under the JMM, a read of a non-volatile variable may see
any write to that variable, either in the past or future, as long
as happens-before consistency is maintained. For reference
data types, however, when reading from an object that will be
created in the future, a null pointer exception will be thrown
from JPF because no such object exists.

For example, see the execution sequence shown in Fig. 11.
Suppose in the first iteration of JPR, Thread-1 creates a Helper
instance at L1 and Thread-2 creates another instance at L2, so
WriteSet(h) contains two values L1 and L2. In the second
iteration, given that execution sequence, the read in Thread-
1 may see either the instance at L1 (previous write) or L2
(future write), but the instance at L2 has not been created at
the time of read, so an exception will be thrown from JPF.

Suppose the constructor of Helper initializes a field x
Helper h is a shared reference

Thread 1 Thread 2
h = new Helper(3);
int r1 = h.x;

h = new Helper(5);

Fig. 11: Read ‘future’ object: Null pointer exception is thrown
when Thread-1 reads the object that will be created in Thread-
2 in the future.

To tackle this problem, we use lazy object initialization; JPR
arbitrarily creates an instance at the specified location when
reading a reference variable from future write if that instance
has not been created.

E. Delayed Reporting of Assertion Violations

When checking program correctness, ordinary Java asser-
tions are generally used. In standard JPF, assertion violations
are caught by JPF’s generic NoUncaughtExceptionProperty;
During model checking, JPF explores all possible interleavings
and throws a NoUncaughtException immediately after an
assertion violation occurs.

JPR on the other hand, does not report assertion errors
immediately. Instead, it delays the reporting of the error until
the end of each executing path. The reason is that a read may
first see a future write and impose it with the value it sees, but
the imposed value might not be justified when he write occurs
(Fig. 8 line 40), and the path will be discarded. This means a
read may return an invalid value initially and discard it later.
In JPR, an assertion error will be detected when reading the
invalid value, but not reported until the end of the executing
path is successfully reached.

For example, see the execution sequence shown in Fig. 12.
In the first iteration of JPR, Thread-2 writes 1 to x. In the
second iteration, Thread-1 reads x as 1 and imposes the write
of x in Thread-2 (underlined action) to write 1. Then the
assertion in Thread-2 is violated. Now, we do not report the
error here because the entire path will eventually be discarded
later on because Thread-2 will not write 0 (not 1) to x in this
case (i.e. imposed value is not justified).

Initially, x == y == 0, x and y are non-volatile variables
Thread 1 Thread 2
r1 = x; read 1 (future), impose
y = r1; write 1

r2 = y; read 1 (previous)
assert(r2 != 1);
if(r2 == 0)

x = 1;
else

x = 0;

Fig. 12: In the 2nd iteration, assertion is violated, but the path
will also be discarded later, because the imposed value is not
justified.

F. Working with Java Racefinder

The JMM guarantees that if a program is data race free
on all of its SC executions (DRF), than all of its executions
are SC. In this case, the original Java Pathfinder is sufficient
and there is no need to apply JPR. However, is it necessary to
verify that a program is DRF. Java Racefinder (JRF) [16], [17],
[15] is an extension of JPF that detects data races according to
the JMM precisely. If no data races are reported by JRF, the
program is DRF. When checking program properties, we first
run JRF to detect if the program is DRF. If not, in most cases,
the next step would be to eliminate the data race. JPR is only
applied to non-DRF programs where we want to determine
whether an intentional race is benign.

JRF is based on JMM’s definition on DRF; “If all sequen-
tially consistent executions of the program are free of data
races” [22], it is a data race free program. During model
checking for data races, JRF maintains a so-called h set that
contains all the variables that are currently not involved in
any data races in the sequentially consistent executions. At
each read/write to non-volatile variables, JRF checks if the
variable is within the h set or not. “When this condition holds
for all non-volatile reads and writes in an (SC) execution, the
execution is h-legal.” [16].

Because we run JRF before JPR, one might believe that
we could maintain WriteSet only for variables that are not
in h set for any executions generated by JRF. However, h set
is defined under the context of SC. A variable not involved
in any sequentially consistent executions may be racy in a
sequentially inconsistent one. See the example in Fig. 13. In
any legal sequentially consistent executions, the write to x at
line 3 will not execute, so x is not involved in data races.
However, under the JMM, the read of y in line 5 may see the
future write in line 4 to let the write of x happen. Therefore,
if a program is non-DRF, we must maintain WriteSet for all
non-volatile variables in the program.

V. EXPERIENCE

To evaluate the performance, we ran JPR on three groups
of test programs. All the testing was performed on 2.40 GHz
Intel R© CoreTM 2 Duo E4600 CPU with 2MB cache, 4GB
main memory, with Linux 2.6.32 operating system, JDK 1.6,
and JPF version 6 (Revision 473).
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Thread# JPR JPF
iter time 1st ave WS states mem time states mem

tc1 2 3 1.2s 0.4s 0.4s 5 105 74M 0.4s 40 59M
tc2 2 3 1.3s 0.4s 0.4s 5 186 74M 0.3s 49 59M
tc3 3 3 2.8s 0.7s 0.9s 6 1410 105M 0.4s 309 59M
tc4 2 3 1.0s 0.3s 0.3s 4 63 59M 0.3s 36 59M
tc5* 4 3 4.5s 1.2s 1.5s 10 4678 172M 0.6s 1169 74M
tc6 2 3 0.9s 0.3s 0.3s 4 76 74M 0.3s 31 59M
tc7 2 4 1.9s 0.4s 0.5s 8 291 105M 0.4s 60 59M
tc8 2 3 1.0s 0.3s 0.3s 5 105 74M 0.3s 40 59M
tc9 3 3 2.4s 0.6s 0.8s 8 1259 105M 0.4s 243 59M
tc9a 4 3 1.8s 0.5s 0.6s 6 589 105M 0.4s 229 74M
tc10* 2 3 3.4s 0.9s 1.1s 7 2399 171M 0.4s 477 59M
tc11 2 4 2.4s 0.4s 0.6s 11 695 105M 0.3s 90 59M
tc12 2 3 1.2s 0.4s 0.4s 8 102 59M 0.4s 58 59M
tc13 2 3 1.1s 0.3s 0.3s 2 34 74M 0.2s 21 59M
tc16 2 3 1.1s 0.3s 0.3s 3 147 74M 0.3s 42 59M
tc17 2 3 1.3s 0.4s 0.4s 7 318 74M 0.3s 66 59M
tc18 2 3 1.4s 0.4s 0.4s 7 318 74M 0.4s 66 59M
tc19 3 3 2.7s 0.6s 0.9s 11 1419 108M 0.4s 381 74M
tc20 3 3 2.6s 0.7s 0.8s 11 1419 108M 0.3s 381 74M
hash 2 3 1.5s 0.5s 0.5s 9 225 74M 0.4s 55 59M
hash 4 3 17.7s 4.2s 5.9s 15 12442 198M 1.2s 3720 108M
hash2 2 3 0.9s 0.3s 0.3s 9 22 74M 0.3s 98 59M
isprime 2 3 1.6s 0.5s 0.5s 22 300 105M 0.3s 114 59M
dcl 2 3 0.7s 0.3s 0.2s 5 20 74M 0.3s 235 74M
peterson 2 3 0.8s 0.3s 0.2s 12 20 59M 0.4s 187 59M
dekker 2 3 0.8s 0.3s 0.2s 13 20 74M 0.3s 196 59M

Fig. 14: Experimental results comparing the performance of JPRwith standard JPF. * means executions are forbidden by JMM
but generated by JPR.

Initially, x = y = z = 0
Thread 1 Thread 2
1 r1 = z; 5 r2 = y;
2 if(r1 == 1) 6 z = r2;
3 x = 1; 7 r3 = x;
4 y = 1;

Fig. 13: A not racy variable under SC may be racy under
non-SC.

A selection of experimental results is listed in Fig. 14.
The columns contain the number of threads, and for JPR, the
number of iterations of collectValuesJPF, the total time, the
time of the 1st iteration, the average time per iteration, the
WriteSet size, the number of states visited in the last iteration,
and the maximum memory consumed, respectively. The last
group of columns indicate the resource usage for standard JPF
for comparison purposes; the running time, number of states
explored, and memory usage.

The programs labeled (tc1 through tc20, and tc9a) are
derived from the JMM Causality Test Cases[14]4. These

4Omitted cases tc14 and tc15 are both programs that are correctly
synchronized and thus data race free. Typically, one would analyze a program
first to determine if there are data races, such as running JRF, and only employ
JPR if data races are found.

Initially, x = y = z = 0

Thread 1 Thread 2 Thread 3 Thread 4
A1: r1 = x B1: r2 = y C1: z = 1 D1: r3 = z
A2: y = r1 B2: x = r2 D2: x = r3

Fig. 15: Test case tc5 from [14]. Illegal behavior
r1 == r2 == 1, and r3 == 0 is generated by JPR.

examples were specifically designed to illustrate the properties
of the JMM and for these, we output all of the paths generated
by JPR in order to compare with the legal executions according
the the JMM. In all cases, JPR generated all allowed paths. For
examples tc5 and tc10, additional executions were generated.
tc5 is shown in Fig. 15, where JPR generates a path with

result r1 == r2 == 1, and r3 == 0. There is a valid path where
action D2 writes 1, A1 reads D2, A2 writes 1, B1 reads A2,
B2 writes 1. Then, on the next iteration, A1 reads B2 (and
imposes 1), B1 reads A2, and then B2 successfully writes 1
as imposed by A1, while D1 reads the initialization action.
However, this is not legal according to the JMM. In order for
r1 == r2 == 1 to appear in a JMM-legal execution, D2 would
need to be a committed action with V (D2) == 1. But then r3
must already be 1, so the execution is not legal. The value 1 is
considered “out-of-thin-air” in any execution where r3 == 0.
tc10 is similar to tc5. JPR could be made more precise by
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tracking impose requirements across iterations and dependent
actions at the cost of significantly increased time and space
overhead.

The second group contains more realistic examples where
assertions were applied to test whether the data races were
benign. Examples hash and hash2 are the two versions of the
hashCode method discussed in Fig. 1 and Fig. 2 respectively.
For hash , we also presented the two-thread and four-thread
versions. In the isprime example [23, §2.6], data races are
created when multiple threads read and write elements of
a shared array without synchronization. Because accesses
to array elements in Java do not have volatile semantics,
these accesses are racy and reads may see stale values. In
this particular program, reading a stale value only affects
performance but not program correctness; it always correctly
identifies if the given integer is prime number or not, so the
data race is therefore benign.

// Global variable
2 Foo foo = new Foo();

...
4 class Foo{

private Helper helper = null ;
6 public Helper getHelper () {

if ( helper == null){ // read helper
8 synchronized(this){

if ( helper == null){
10 helper = new Helper(); // construct helper

}
12 }

}
14 return helper ;

}
16 }

class Helper{
18 public int x;

public Helper(){ x = 10; }
20 }

class Thread0 extends Thread{
22 public void run(){

Helper h1 = foo. getHelper ();
24 assert(h1.x != 0);

}
26 }

class Thread1 extends Thread{
28 public void run(){

Helper h2 = foo. getHelper ();
30 assert(h2.x != 0);

}
32 }

Fig. 16: Double checked locking

The examples in the third group are well-known synchro-
nization problems. dcl is the infamous double-checked locking
(DCL) idiom [3] which attempts to reduce locking overhead
by lazy initialization of an object, but fails to safely publish
the object, allowing other threads to see a partially constructed
object. In the example given in Fig. 16, there are two threads
calling getHelper () method of Foo. In getHelper () , the read of
helper (line 7) is placed outside the synchronized block, while
the construction of helper (line 10) is within the synchronized
block. There is a data race between the two actions. Suppose
at one time, Thread0 is executing line 10 while Thread1 is
executing line 7 just before Thread0 has finished construction
of helper . Then Thread1 detects that helper is not empty

and returns it immediately without entering the synchronized
block. In this case, Thread0 is actually returning a partially
constructed object. To capture this bug, we inserted assertions
to check if the reference returned from getHelper () is correctly
constructed or not (line 24 and 30); if correctly constructed,
the x field of the reference should not be 0 (initial value).

peterson and dekker are implementations of the classic
mutual exclusion algorithms without using volatiles. They
guarantee mutual exclusion under sequential consistency, but
fail in relaxed memory models such as JMM. Peterson’s
algorithm is shown in Fig. 17. Under SC, line 10 in Thread0 is
mutually exclusive with line 19 in Thread1. After termination
of the two threads, x should always be 2. Under the JMM, it is
possible that Thread1 writes flag[1] to true at first but Thread0
later on still reads flag[1] as the old value false and hence skips
the busy wait (line 9). Then both threads will be executing
the mutually exclusive regions. In this case, the two x++
will interfere with each other and the assertion (line 29) will
fail. Dekker’s algorithm uses a similar strategy as Peterson’s
algorithm. Assertions inserted to check non-interference in the
critical sections in peterson and dekker failed as expected.

// Global variables
2 boolean flag [] = new boolean[]{false , false };

int turn , x = 0;
4 ...

class Thread0 extends Thread{
6 public void run(){

flag [0] = true ;
8 turn = 1;

while( flag [1] == true && turn == 1){}
10 x++; // critical section

flag [0] = false ;
12 }
}

14 class Thread1 extends Thread{
public void run(){

16 flag [1] = true ;
turn = 0;

18 while( flag [0] == true && turn == 0){}
x++; // critical section

20 flag [1] = false ;
}

22 }
// main thread

24 Thread0 t0 = new Thread0();
Thread1 t1 = new Thread1();

26 t0 . start (); t1 . start ();
try{

28 t0 . join (); t1 . join ();
assert(x == 2);

30 }catch(Exception e){}

Fig. 17: Peterson’s algorithm: guarantees mutual exclusion
under SC, but fails under JMM.

The paths in which dcl, peterson , and dekker had assertion
violations are legal according to JMM and therefore were
detected by JPR but are not exhibited by sequentially con-
sistent programs. Standard JPF cannot detect these problems.
For these test cases, JPR took less time and explored fewer
states than JPF because the assertion violations terminated JPR
before the full path exploration was complete.

From Fig. 14, we find that JPR is able to detect synchro-
nization problems under JMM, while JPF cannot. JPR could
generate all the JMM-legal executions but yield an overesti-
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mated result set (tc5 and tc10). Generally, the average time per
iteration of JPR is larger than the time taken by JPF, because
JPR generates more paths due to both thread and data non-
determinisms, while standard JPF only has thread interleaving.
The average time per iteration is generally larger than the time
of the 1st iteration, that’s because of the monotone expansion
of the WriteSet ; more paths are explored in the following
iterations.

VI. RELATED WORK

There are many other relaxed memory models that are
“weaker” than SC but have slightly “stronger” semantics than
JMM. The store-buffer based memory models; Partial Store
Order (PSO) and Total Store Order (TSO) are hardware
memory models used in SPARC architecture and allow certain
hardware optimizations. PSO maintains a set of “store buffers”
(FIFO queues), each associated with a (process, variable) pair,
while TSO maintains only one store buffer per process. In
PSO, when process pi writes value v to variable x, it writes v
to the corresponding store buffer (pi, x); when pi reads from
x, it first reads from its store buffer (pi, x), and if it is empty,
reads from the shared memory. The oldest values in the store
buffers are flushed to the memory at some non-deterministic
point. A fence operation on variable x performed by process
pi forces the most recent value written by pi to be written
back to the memory. Due to delayed stores caused by non-
deterministic flush operations, PSO is more relaxed than SC;
a process may not always see the value of the most recent
store. However, PSO has more inter-process restrictions than
JMM; “A process pi should not observe values written to
shared variable x by process pj in an order different from the
order in which they were written.”[18] This means the read can
only see the values that have been previously written by other
processes, and the values written by one process should be
viewed in order. [18] introduced an approach to model check
programs under PSO. [20] used an automata-based approach
to verify programs under TSO.

We have adapted JPR to reason about programs under
PSO. Since only previously happened writes are visible to
the reads, iteration is no longer needed. We only need to
run collectValuesJPF once and the metadata ActionSet and
ImposeSet can be discarded. However, we have to enforce a
total order over the WriteSet with respect to the process. Thus
the set of (actionID , value) tuples for a memory location
should be replaced by a list of (processID , value) tuples. A
simple operational semantic for JPR under PSO (p: process,
x: variable, v: value) follows:
• Store(pi, x, v): Put (pi, v) to the end of WriteSet(x).
• Load(pi, x): Get last (pi, v) from WriteSet(x). If there

is no (pi, v), get (pj , v
′) non-deterministically from

WriteSet(x), then delete all the (pj , v
′′) tuples in front

of it.
• Fence(pi): Suppose the last store action of pi before the

fence is Store(pi, x, v), then in WriteSet(x) delete all
the (pi, v

′) tuples in front of the last (pi, v).
Other work on verification of programs executing under

hardware memory models include a SAT-based bounded veri-
fication method to check concurrent data types under relaxed

memory ordering models [6] and a monitor algorithm that
could be implemented by model checkers to verify relaxed
memory models due to store buffers[7]. Gopalakrishnan, Yang,
and Sivaraj [10] used a SAT-based technique to evaluate tests
in the context of the Itanium memory model.

In the area of memory models for programming languages,
T. Q. Huynh et. al [12] proposed a bytecode level model
checker for the relaxed C# memory model. The MemSAT
system [24] system has a different goal than verifying pro-
grams: it accepts a test program containing assertions and an
axiomatic specification of a memory model and then uses an
SAT solver to find a trace that satisfies the assertions and
axioms, if there is one. Both the original JMM specification
[11], and the modified version proposed by [2] were found to
have surprising results when applied to the JMM Causality test
cases. MemSAT is intended to be used with small “litmus test”
programs to debug memory model specifications. In contrast,
JPR is intended to reason about programs. It explores all
possible paths according to the JMM and reports any assertion
(program constrain violation) violations, which can help to
decide whether the races are benign or not. JPR can be used
with programs containing object instantiation, loops and other
features that are not well supported in MemSAT.

The authors of Java memory model developed a simple
simulator for the JMM [21] which appears to be geared more
towards understanding the memory model than serving as a
tool for program analysis. De et al. [8] developed OpMM
which uses a model checker similar to JPF for state explo-
ration. In contrast to JPR, OpMM is an underapproximation
of the JMM where read actions can see past writes that
occur before it in a sequentially consistent execution. As an
underapproximation, OpMM could be used for bug detection
of racy programs, but not verification.

VII. CONCLUSION

We have described JPR, an extension of JPF that generates
an overapproximation of the JMM. With this extension, JPF
can also be applied to the verification of Java programs with
data races. Our approach runs the model checking algorithm in
an iterative way to compute a least fixed point of a monotone
function that can generate sequentially inconsistent executions.

Although, like any tool based on model checking, state-
space explosion is a potential problem, we were able to suc-
cessfully use the tool to show that data races in some examples
are benign. We also demonstrated assertion violations in some
programs which are not detectable without awareness of the
JMM.
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